首页> 外文OA文献 >Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data
【2h】

Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data

机译:确定大气数据中大范围的不可预测性和对日照的响应模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the complex dynamics of the atmosphere is of paramount interest due to its impact in the entire climate system and in human society. Here we focus on identifying, from data, the geographical regions which have similar atmospheric properties. We study surface air temperature (SAT) time series with monthly resolution, recorded at a regular grid covering the Earth surface. We consider two datasets: NCEP CDAS1 and ERA Interim reanalysis. We show that two surprisingly simple measures are able to extract meaningful information: i) the distance between the lagged SAT and the incoming solar radiation and ii) the Shannon entropy of SAT and SAT anomalies. The distance uncovers well-defined spatial patterns formed by regions with similar SAT response to solar forcing while the entropy uncovers regions with similar degree of SAT unpredictability. The entropy analysis also allows identifying regions in which SAT has extreme values. Importantly, we uncover differences between the two datasets which are due to the presence of extreme values in one dataset but not in the other. Our results indicate that the distance and entropy measures can be valuable tools for the study of other climatological variables, for anomaly detection and for performing model inter-comparisons.
机译:由于大气层对整个气候系统和人类社会的影响,因此了解大气层的复杂动态至关重要。在这里,我们着重于从数据中识别具有相似大气特性的地理区域。我们以每月的分辨率研究地表温度(SAT)的时间序列,并记录在覆盖地球表面的规则网格上。我们考虑两个数据集:NCEP CDAS1和ERA临时重新分析。我们证明了两种令人惊讶的简单措施能够提取有意义的信息:i)滞后SAT与入射太阳辐射之间的距离,ii)SAT和SAT异常的香农熵。距离揭示了由具有相似的SAT对太阳强迫响应的区域形成的定义明确的空间模式,而熵揭示了具有相似的SAT不可预测性的区域。熵分析还可以识别SAT具有极值的区域。重要的是,我们发现两个数据集之间的差异是由于一个数据集中存在极值,而另一个数据集中却没有。我们的结果表明,距离和熵测度可能是研究其他气候变量,异常检测和进行模型比对的有价值的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号